<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AP201BS</td>
<td>Applied Physics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CH202BS</td>
<td>Engineering Chemistry</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>MA203BS</td>
<td>Mathematics-III</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>EN204HS</td>
<td>Professional Communication in English</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EE205ES</td>
<td>Basic Electrical & Electronics Engineering</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>CH206BS</td>
<td>Engineering Chemistry Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>EN207HS</td>
<td>English Language Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>ME208ES</td>
<td>Engineering Workshop</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>*EA209MC</td>
<td>NCC/NSO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>18</td>
<td>1</td>
<td>9</td>
<td>24</td>
</tr>
</tbody>
</table>

*Mandatory Course
Course Objectives:
- To understand the elastic behavior of materials.
- To understand basic principles of acoustics and architecture of buildings.
- To study production and applications of ultrasonics.
- To understand magnetic, dielectric and superconducting properties.

Course Outcomes: after completion of this course the student is able to
- Realize the importance of elastic behavior of materials.
- Learn Sabine’s formula for reverberation time and apply in architecture of buildings.
- Learn various methods of producing ultrasonics and their uses.
- Learn magnetic, dielectric and superconducting properties of materials and their applications.

UNIT - I
Elastic properties: stress and strain, Hooke’s law, elastic behavior of a material, factors affecting elasticity, three modulii of elasticity, work done for unit volume in deforming a body, relation between three modulii of elasticity, determination of rigidity modulus – torsional pendulum.

UNIT - II
Acoustics of buildings and acoustic quieting: Introduction, basic requirement for the acoustically good halls, reverberation and time of reverberation, transmission of sound and transmission loss, factors affecting the architectural acoustics and their remedy, sound absorbing materials, sabine formulae, absorption coefficients, stadium seating, movie theater, acoustic quieting.

UNIT - III
Ultrasonics: Introduction, production of ultrasonic waves, magnetostriction method, piezoelectric method, detection of ultrasonic waves, properties of ultrasonic waves, use of ultrasonics for nondestructive testing, applications of ultrasonics.

UNIT - IV
Dielectric Properties: Electric dipole, dipole moment, dielectric constant, polarizability, electric susceptibility, displacement vector, electronic, ionic and orientation polarizations and calculation of their polarizabilities, internal field, Clausius-Mossotti relation, Piezoelectricity, pyroelectricity and ferroelectricity-BaTiO₃ structure.

UNIT - V
Magnetic Properties: Permeability, field intensity, magnetic field induction, magnetization, magnetic susceptibility, origin of magnetic moment, Bohr magneton, classification of dia, para
and ferro magnetic materials on the basis of magnetic moment, hysteresis curve based on domain theory, soft and hard magnetic materials, properties of anti-ferro and ferri magnetic materials.

Superconductivity: Superconductivity phenomenon, Meissner effect, applications of superconductivity.

Text books:

1. Solid State Physics, A. J. Dekkar, MacMillan publishers
2. Fundamentals of Physics, Alan Giambattisa, BM Richardson and Robert C Richardson, Tata McGraw hill Publishers

Reference Books:

1. Solid state physics, Charles Kittel, Wiley student edition
2. University Physics, Francis W. Sears, Hugh D. Young, Marle Zeemansky and Roger A Freedman, Pearson Education.
Course Objectives:
- To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer.
- To include the importance of water in industrial usage, significance of corrosion control to protect the structures, polymers and their controlled usage.
- To acquire knowledge of engineering materials and about fuels and batteries.
- To acquire required knowledge about engineering materials like cement, refractories and composites.

Course Outcomes:
- Students will gain the basic knowledge of electrochemical procedures related to corrosion and its control.
- They can understand the basic properties of water and its usage in domestic and industrial purposes.
- They learn the use of fundamental principles to make predictions about the general properties of materials.
- They can predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs

UNIT - I

UNIT - II
Electrochemistry: Electrode- electrode potential, standard electrode potential, types of electrodes – Construction and functioning of Standard hydrogen electrode, calomel and glass electrode. Nernst equation - electrochemical series and its applications. Electrochemical cells: Daniel cell – cell notation, cell reaction, and cell emf — Concept of concentration cells – Electrolyte concentration cell –Numerical problems.
Batteries: Cell and battery - Primary battery (dry cell, alkaline cell and Lithium cell) and Secondary battery (lead acid, Ni-Cd and lithium ion cell), **Fuel cells:** Hydrogen – oxygen and methanol-oxygen fuel cells – Applications.

UNIT – III

Polymers: Definition – Classification of polymers with examples – Types of polymerization – addition (free radical addition) and condensation polymerization with examples.

Plastics: Definition and characteristics- thermoplastic and thermosetting plastics, compounding, and fabrication of plastics (compression and injection moulding). Preparation, Properties, and engineering applications of PVC and Bakelite.

Fibers: Characteristics of fibers – preparation, properties and applications of Nylon-6,6 and Dacron. Fiber reinforced plastics (FRP) – Applications.

Rubbers: Natural rubber and its vulcanization - compounding of rubber.

Elastomers: Characteristics – preparation – properties and applications of Buna-S, Butyl and Thiokol rubber.

Conducting polymers: Characteristics and Classification with examples-mechanism of conduction in trans-polyacetylene and applications of conducting polymers.

Biodegradable polymers: Concept and advantages - Polylactic acid and poly vinyl alcohol and their applications.

UNIT - IV

UNIT - V

Cement: Portland cement, its composition, setting and hardening of Portland cement.

Special cements: White cement, water proof cement, High alumina cement, and Acid resistant cement.

Refractories: Classification, characteristics of good refractories, Refractoriness, refractoriness under load, porosity, and chemical inertness – applications of refractories.

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants - mechanism of lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point.

Composites: Introduction- Constituents of composites – advantages, classification and constituents of composites. Applications of composites.

Text books:

Reference Books:
MA203BS: Mathematics - III
(Statistical and Numerical Methods)

B.Tech. I Year II Sem.
L T/P/D C
4 1/0/0 4

Prerequisites: Foundation course (No prerequisites).

Course Objectives: To learn
- random variables that describe randomness or an uncertainty in certain realistic situation
- binomial geometric and normal distributions
- sampling distribution of mean, variance, point estimation and interval estimation
- the testing of hypothesis and ANOVA
- the topics those deals with methods to find roots of an equation
- to fit a desired curve by the method of least squares for the given data
- solving ordinary differential equations using numerical techniques

Course Outcomes: After learning the contents of this course the student must be able to
- differentiate among random variables involved in the probability models which are useful for all branches of engineering
- calculate mean, proportions and variances of sampling distributions and to make important decisions for few samples which are taken from a large data
- solve the tests of ANOVA for classified data
- find the root of a given equation and solution of a system of equations
- fit a curve for a given data
- find the numerical solutions for a given first order initial value problem

UNIT – I
Random variables and Distributions:
Introduction, Random variables, Discrete random variable, Continuous random variable, Probability distribution function, Probability density function, Expectation, Moment generating function, Moments, and properties.

UNIT – II

UNIT – III
Tests of Hypothesis: Introduction, Hypothesis, Null and Alternative Hypothesis, Type I and Type II errors, Level of significance, One tail and two-tail tests, Tests concerning one mean
and proportion, two means-proportions and their differences-ANOVA for one-way classified data.

UNIT – IV

Curve Fitting: Fitting a linear, second degree, exponential, power curve by method of least squares.

UNIT – V

Text Books:

References:
2. Introductory Methods of Numerical Analysis by S. S. Sastry, PHI Learning Pvt. Ltd.
INTRODUCTION:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire language skills, the syllabus of English has been designed to develop linguistic and communicative competencies of Engineering students.

In English classes, the focus should be on the skills development in the areas of vocabulary, grammar, reading and writing. For this, the teachers should use the prescribed text for detailed study. The students should be encouraged to read the texts/poems silently leading to reading comprehension. Reading comprehension passages are given for practice in the class. The time should be utilized for working out the exercises given after each excerpt, and also for supplementing the exercises with authentic materials of a similar kind. For example, from newspaper articles, advertisements, promotional material, etc. The focus in this syllabus is on skill development, fostering ideas and practice of language skills.

Course Objectives: The course will help students to:

- Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- Equip students to study academic subjects more effectively using the theoretical and Practical components of English syllabus.
- Develop study skills and communication skills in formal and informal situations.

Course Outcomes: Students will be able to:

- Use English Language effectively in spoken and written forms.
- Comprehend the given texts and respond appropriately.
- Communicate confidently in formal and informal contexts.

SYLLABUS

Reading Skills

Objectives

1. To develop an awareness in students about the significance of silent reading and comprehension.
2. To develop students’ ability to guess meanings of words from the context and grasp the overall message of the text, draw inferences, etc., by way of:
 - Skimming and Scanning the text
 - Intensive and Extensive Reading
 - Reading for Pleasure
 - Identifying the topic sentence
 - Inferring lexical and contextual meaning
Recognizing Coherence/Sequencing of Sentences

NOTE: The students will be trained in reading skills using the prescribed texts for detailed study. They will be tested in reading comprehension of different ‘unseen’ passages which may be taken from authentic texts, such as magazines/newspaper articles.

Writing Skills

Objectives
1. To develop an awareness in the students about writing as an exact and formal skill
2. To create an awareness in students about the components of different forms of writing, beginning with the lower order ones through;
 - Writing of sentences
 - Use of appropriate vocabulary
 - Paragraph writing
 - Coherence and cohesiveness
 - Narration / description
 - Note Making
 - Formal and informal letter writing
 - Describing graphs using expressions of comparison

In order to improve the proficiency of the students in the acquisition of language skills mentioned above, the following text and course contents, divided into Five Units, are prescribed:

The course content / study material is divided into Five Units.

Note: Listening and speaking skills are covered in the syllabus of ELCS Lab.

UNIT – I
Chapter entitled ‘Presidential Address’ by Dr. A.P.J. Kalam from “Fluency in English– A Course book for Engineering Students” published by Orient BlackSwan, Hyderabad.

Vocabulary: Word Formation -- Root Words --The Use of Prefixes and Suffixes-- Collocations--Exercises for Practice.
Grammar: Punctuation – Parts of Speech- Articles -Exercises for Practice.
Reading: Double Angels by David Scott-Reading and Its Importance- Techniques for Effective Reading- Signal Words- Exercises for Practice
Writing: Writing Sentences- Techniques for Effective Writing-- Paragraph Writing-Types, Structure and Features of a Paragraph-Coherence and Cohesiveness: Logical, Lexical and Grammatical Devices - Exercises for Practice

UNIT – II
Chapter entitled Satya Nadella: Email to Employees on his First Day as CEO from “Fluency in English– A Course book for Engineering Students” Published by Orient BlackSwan, Hyderabad.
Vocabulary: Synonyms and Antonyms – Homonyms, Homophones, Homographs- Exercises for Practice (Chapter 17 ‘Technical Communication- Principles and Practice’. Third Edition published by Oxford University Press may also be followed.)

Grammar: Verbs-Transitive, Intransitive and Non-finite Verbs – Mood and Tense—Gerund – Words with Appropriate Prepositions – Phrasal Verbs - Exercises for Practice

Reading: Sub-skills of Reading- Skimming, Scanning, Extensive Reading and Intensive Reading - The Road Not Taken by Robert Frost -- Exercises for Practice

UNIT – III

Vocabulary: Introduction- A Brief History of Words – Using the Dictionary and Thesaurus– Changing Words from One Form to Another – Confusables (From Chapter 17 entitled ‘Grammar and Vocabulary Development’)

Grammar: Tenses: Present Tense- Past Tense- Future Tense- Active Voice – Passive Voice- Conditional Sentences – Adjective and Degrees of Comparison. (From Chapter 17 entitled ‘Grammar and Vocabulary Development’)

Reading: Improving Comprehension Skills – Techniques for Good Comprehension-Skimming and Scanning- Non-verbal Signals – Structure of the Text – Structure of Paragraphs – Punctuation – Author’s viewpoint (Inference) – Reader Anticipation: Determining the Meaning of Words – Summarizing- Typical Reading Comprehension Questions. (From Chapter 10 entitled ‘Reading Comprehension’)

Writing: Introduction- Letter Writing-Writing the Cover Letter- Cover Letters Accompanying Resumes- Emails. (From Chapter 15 entitled ‘Formal Letters, Memos, and Email’)

UNIT – IV
Chapter entitled ‘Good Manners’ by J.C. Hill from Fluency in English – A Course book for Engineering Students” published by Orient Blackswan, Hyderabad.

Vocabulary: Idiomatic Expressions –One- word Substitutes --- Exercises for Practice (Chapter 17 ‘Technical Communication- Principles and Practice’. Third Edition published by Oxford University Press may also be followed.)

Grammar: Sequence of Tenses- Concord (Subject in Agreement with the Verb) – Exercises for Practice

Reading: ‘If’ poem by Rudyard Kipling--Tips for Writing a Review --- Author’s Viewpoint – Reader’s Anticipation-- Herein the Students will be required to Read and Submit a Review of a Book (Literary or Non-literary) of their choice – Exercises for Practice.

Writing: Information Transfer-Bar Charts-Flow Charts-Tree Diagrams etc., -- Exercises for Practice.

UNIT – V
Chapter entitled ‘Father Dear Father’ by Raj Kinger from Fluency in English – A Course book for Engineering Students” Published by Orient BlackSwan, Hyderabad

Vocabulary: Foreign Words—Words borrowed from other Languages- Exercises for Practice
Grammar: Direct and Indirect Speech- Question Tags- Exercises for Practice
Reading: Predicting the Content- Understanding the Gist – SQ3R Reading Technique- Study Skills – Note Making - Understanding Discourse Coherence – Sequencing Sentences. (From Chapter 10 entitled ‘Reading Comprehension’ - Technical Communication- Principles and Practice. Third Edition published by Oxford University Press.)

Exercises from both the texts not prescribed shall be used for classroom tasks.

Text Books:

References:
Course Objectives:
- To introduce the concept of electrical circuits and its components
- To introduce the concepts of diodes & transistors, and
- To impart the knowledge of various configurations, characteristics and applications.

Course Outcomes: After this course, the student will be able
- To analyze and solve electrical circuits using network laws and theorems.
- To identify and characterize diodes and various types of transistors.

UNIT - I
Basic Concepts of Electrical Circuits and Single Phase AC Circuits
Electrical Circuits: R-L-C Parameters, Voltage and Current, Independent and Dependent Sources, Source Transformation – V-I relationship for passive elements, Kirchoff’s Laws, Network reduction techniques – series, parallel, series-parallel, star-to-delta, delta-to-star transformation, Nodal Analysis,
Single Phase AC Circuits: R.M.S. and Average values, Form Factor, steady state analysis of series, parallel and series-parallel combinations of R, L and C with sinusoidal excitation, concept of reactance, impedance, susceptance and admittance – phase and phase difference, Concept of power factor, j-notation, complex and polar forms of representation.

UNIT - II
Resonance: Series resonance and Parallel resonance circuits, concept of bandwidth and Q factor, Locus Diagrams for RL, RC and RLC Combinations for Various Parameters.
Network Theorems: Thevenin’s, Norton’s, Maximum Power Transfer, Superposition, Reciprocity, Tellegen’s, Millman’s and Compensation theorems for DC and AC excitations.

UNIT - III
P-N Junction Diode: Diode equation, Energy Band diagram, Volt-Ampere characteristics, Temperature dependence, Ideal versus practical, Static and dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition Capacitances.
Rectifiers and Filters: P-N junction diode as a rectifier - Half Wave Rectifier, Ripple Factor - Full Wave Rectifier, Bridge Rectifier, Harmonic components in Rectifier Circuits, Filters – Inductor Filters, Capacitor Filters, L- section Filters, π- section Filters.

UNIT - IV
Transistor Biasing And Stabilization - Operating point, DC & AC load lines, Biasing - Fixed Bias, Emitter Feedback Bias, Collector to Emitter feedback bias, Voltage divider bias, Bias stability, Stabilization against variations in V_{BE} and β, Bias Compensation using Diodes and Transistors.

Transistor Configurations: BJT modeling, Hybrid model, Determination of h-parameters from transistor characteristics, Analysis of CE, CB and CC configurations using h-parameters, Comparison of CE, CB and CC configurations.

UNIT- V

Special Purpose Devices: Breakdown Mechanisms in Semi-Conductor Diodes, Zener diode characteristics, Use of Zener diode as simple regulator, Principle of operation and Characteristics of Tunnel Diode (With help of Energy band diagram) and Varactor Diode, Principle of Operation of SCR.

Text Books:
1. Basic Electrical and electronics Engineering – M S Sukija TK Nagasarkar Oxford University

References:
6. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
LIST OF EXPERIMENTS

Volumetric Analysis:
1. Estimation of Ferrous ion by Dichrometry.
2. Estimation of hardness of water by Complexometric method using EDTA.
3. Estimation of Ferrous and Ferric ions in a given mixture by Dichrometry.
4. Estimation Ferrous ion by Permanganometry.
5. Estimation of copper by Iodometry.
6. Estimation of percentage of purity of MnO$_2$ in pyrolusite.
7. Determination of percentage of available chlorine in bleaching powder.
8. Determination of salt concentration by ion-exchange resin.

Instrumental methods of Analysis:
1. Estimation of HCl by Conductometry.
2. Estimation of Ferrous ion by Potentiometry.
3. Determination of Ferrous iron in cement by Colorimetric method.
4. Determination of viscosity of an oil by Redwood / Oswald’s Viscometer.
5. Estimation of manganese in KMnO$_4$ by Colorimetric method.
6. Estimation of HCl and Acetic acid in a given mixture by Conductometry.
7. Estimation of HCl by Potentiometry.

Preparation of Polymers:
1. Preparation of Bakelite and urea formaldehyde resin.

Note: All the above experiments must be performed.

Text Books:
EN107HS/EN207HS: ENGLISH LANGUAGE COMMUNICATION SKILLS LAB

B.Tech. I Year II Sem. L T/P/D C 0 0/3/0 2

The English Language Communication Skills (ELCS) Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:

- To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency of students in spoken English and neutralize their mother tongue influence
- To train students to use language appropriately for public speaking, group discussions and interviews

Course Outcomes: Students will be able to attain:

- Better understanding of nuances of English language through audio-visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking skills with clarity and confidence which in turn enhances their employability skills.

Syllabus: English Language Communication Skills Lab (ELCS) shall have two parts:

- Computer Assisted Language Learning (CALL) Lab
- Interactive Communication Skills (ICS) Lab

Listening Skills: Objectives:

- To enable students develop their listening skills so that they may appreciate the role in the LSRW skills approach to language and improve their pronunciation
- To equip students with necessary training in listening, so that they can comprehend the speech of people of different backgrounds and regions.

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information
Speaking Skills: Objectives
- To involve students in speaking activities in various contexts
- To enable students express themselves fluently and appropriately in social and professional contexts:
 - Oral practice
 - Describing objects/situations/people
 - Role play – Individual/Group activities
 - Just A Minute (JAM) Sessions.

The following course content is prescribed for the English Language Communication Skills Lab.

Exercise – I
CALL Lab:
Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers- Effective Listening.
Testing Exercises
ICS Lab:
Understand: Spoken vs. Written language- Formal and Informal English.

Exercise – II
CALL Lab:
Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms- Sentence Stress – Intonation.
Testing Exercises
ICS Lab:

Exercise - III
CALL Lab:
Understand: Errors in Pronunciation-the Influence of Mother Tongue (MTI).
Practice: Common Indian Variants in Pronunciation – Differences between British and American Pronunciation.
Testing Exercises
ICS Lab:
Understand: Descriptions- Narrations- Giving Directions and Guidelines.
Practice: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise – IV
CALL Lab:
Understand: Listening for General Details.
Practice: Listening Comprehension Tests.
Testing Exercises
ICS Lab:
Practice: Making a Short Speech – Extempore- Making a Presentation.

Exercise – V
CALL Lab:
Understand: Listening for Specific Details.
Practice: Listening Comprehension Tests.
Testing Exercises
ICS Lab:
Understand: Group Discussion- Interview Skills.
Practice: Group Discussion- Mock Interviews.

Minimum Requirement of infrastructural facilities for ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:
The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self-study by students.
System Requirement (Hardware component):
Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:
Computers with Suitable Configuration
High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab:
The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public Address System, a T. V. or LCD, a digital stereo –audio & video system and camcorder etc.

Prescribed Lab Manuals:

Suggested Software:
1. Cambridge Advanced Learners’ English Dictionary with CD.
2. Grammar Made Easy by Darling Kindersley.
3. Punctuation Made Easy by Darling Kindersley.
5. English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
7. TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS).

References:
Pre-requisites: Practical skill

Course Objectives:
- To study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:
- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:
At least two exercises from each trade:
- Carpentry
- Fitting
- Tin-Smithy and Development of jobs carried out and soldering.
- Black Smithy
- House-wiring
- Foundry
- Welding
- Power tools in construction, wood working, electrical engineering and mechanical Engineering.

2. TRADES FOR DEMONSTRATION & EXPOSURE:
- Plumbing, Machine Shop, Metal Cutting (Water Plasma)

Text Books:
1. Workshop Practice /B. L. Juneja / Cengage

Reference Books:
2. Workshop Manual / Venkat Reddy/ BSP